Nanomechanical properties of tenascin-X revealed by single-molecule force spectroscopy.

نویسندگان

  • Ashlee Jollymore
  • Claire Lethias
  • Qing Peng
  • Yi Cao
  • Hongbin Li
چکیده

Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-X is an elastic protein and the fibronectin type III (FnIII) domains can unfold under a stretching force and refold to regain their mechanical stability upon the removal of the stretching force. All the 30 FnIII domains of tenascin-X show similar mechanical stability, mechanical unfolding kinetics, and contour length increment upon domain unfolding, despite their large sequence diversity. In contrast to the homogeneity in their mechanical unfolding behaviors, FnIII domains fold at different rates. Using the 10th FnIII domain of tenascin-X (TNXfn10) as a model system, we constructed a polyprotein chimera composed of alternating TNXfn10 and GB1 domains and used atomic force microscopy to confirm that the mechanical properties of TNXfn10 are consistent with those of the FnIII domains of tenascin-X. These results lay the foundation to further study the mechanical properties of individual FnIII domains and establish the relationship between point mutations and mechanical phenotypic effect on tenascin-X. Moreover, our results provided the opportunity to compare the mechanical properties and design of different forms of tenascins. The comparison between tenascin-X and tenascin-C revealed interesting common as well as distinguishing features for mechanical unfolding and folding of tenascin-C and tenascin-X and will open up new avenues to investigate the mechanical functions and architectural design of different forms of tenascins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering proteins with tailored nanomechanical properties: a single molecule approach.

Elastomeric proteins underlie the elasticity of natural adhesives, cell adhesion and muscle proteins. They also serve as structural materials with superb mechanical properties. Single molecule force spectroscopy has made it possible to directly probe the mechanical properties of elastomeric proteins at the single molecule level and revealed insights into the molecular design principles of elast...

متن کامل

The unfolding and folding dynamics of TNfnALL probed by single molecule force–ramp spectroscopy

Tenascin, an important extracellular matrix protein, is subject to stretching force under physiological conditions and plays important roles in regulating the cell–matrix interactions. Using the recently developed single molecule force–ramp spectroscopy, we investigated the unfolding– folding kinetics of a recombinant tenascin fragment TNfnALL. Our results showed that all the 15 FnIII domains i...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

A nanomechanical interface to rapid single-molecule interactions.

Single-molecule techniques provide opportunities for molecularly precise imaging, manipulation, assembly and biophysical studies. Owing to the kinetics of bond rupture processes, rapid single-molecule measurements can reveal novel bond rupture mechanisms, probe single-molecule events with short lifetimes and enhance the interaction forces supplied by single molecules. Rapid measurements will al...

متن کامل

Preparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices

In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and  silicon  substrates  using  single  ion  beam  sputtering  technique.  The  physical  and  chemical properties  of  prepared  films  were  investigated  by  different  characterization  technique.  X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 385 4  شماره 

صفحات  -

تاریخ انتشار 2009